Tutorial 10: Isotropic damage model
This tutorial is under construction, but the code below is already functional.
using Gridap
using LinearAlgebra
Model definition
Elastic branch
const E = 3.0e10 # Pa
const ν = 0.3 # dim-less
const λ = (E*ν)/((1+ν)*(1-2*ν))
const μ = E/(2*(1+ν))
@law σe(ε) = λ*tr(ε)*one(ε) + 2*μ*ε # Pa
τ(ε) = sqrt(ε ⊙ σe(ε)) # Pa^(1/2)
Damage
const σ_u = 4.0e5 # Pa
const r_0 = σ_u / sqrt(E) # Pa^(1/2)
const H = 0.5 # dim-less
function d(r)
1 - q(r)/r
end
function q(r)
r_0 + H*(r-r_0)
end
Update of the state variables
@law function update(ε_in,r_in,d_in)
τ_in = τ(ε_in)
if τ_in <= r_in
r_out = r_in
d_out = d_in
damaged = false
else
r_out = τ_in
d_out = d(r_out)
damaged = true
end
damaged, r_out, d_out
end
Constitutive law and its linearization
@law function σ(ε_in,r_in,d_in)
_, _, d_out = update(ε_in,r_in,d_in)
(1-d_out)*σe(ε_in)
end
@law function dσ(dε_in,ε_in,state)
damaged, r_out, d_out = state
if ! damaged
return (1-d_out)*σe(dε_in)
else
c_inc = ((q(r_out) - H*r_out)*(σe(ε_in) ⊙ dε_in))/(r_out^3)
return (1-d_out)*σe(dε_in) - c_inc*σe(ε_in)
end
end
max dead load
const b_max = VectorValue(0.0,0.0,-(9.81*2.5e3))
L2 projection
form Gauss points to a Lagrangian piece-wise discontinuous space
function project(q,trian,quad,order)
a(u,v) = u*v
l(v) = v*q
t_Ω = AffineFETerm(a,l,trian,quad)
V = TestFESpace(
reffe=:Lagrangian, valuetype=Float64, order=order,
triangulation=trian, conformity=:L2)
U = TrialFESpace(V)
op = AffineFEOperator(U,V,t_Ω)
qh = solve(op)
qh
end
Main function
function main(;n,nsteps)
r = 12
domain = (0,r,0,1,0,1)
partition = (r*n,n,n)
model = CartesianDiscreteModel(domain,partition)
labeling = get_face_labeling(model)
add_tag_from_tags!(labeling,"supportA",[1,3,5,7,13,15,17,19,25])
add_tag_from_tags!(labeling,"supportB",[2,4,6,8,14,16,18,20,26])
add_tag_from_tags!(labeling,"supports",["supportA","supportB"])
order = 1
V = TestFESpace(
reffe=:Lagrangian, valuetype=VectorValue{3,Float64}, order=order,
model=model,
labels = labeling,
dirichlet_tags=["supports"])
U = TrialFESpace(V)
trian = Triangulation(model)
degree = 2*order
quad = CellQuadrature(trian,degree)
r = CellField(r_0,trian,quad)
d = CellField(0.0,trian,quad)
nls = NLSolver(show_trace=true, method=:newton)
solver = FESolver(nls)
function step(uh_in,factor)
b = factor*b_max
res(u,v) = ( ε(v) ⊙ σ(ε(u),r,d) ) - v⋅b
function jac(u,du,v)
state = update(ε(u),r,d)
ε(v) ⊙ dσ(ε(du),ε(u),state)
end
t_Ω = FETerm(res,jac,trian,quad)
op = FEOperator(U,V,t_Ω)
uh_out, = solve!(uh_in,solver,op)
update_state_variables!(update,quad,ε(uh_out),r,d)
uh_out
end
factors = collect(1:nsteps)*(1/nsteps)
uh = zero(V)
for (istep,factor) in enumerate(factors)
println("\n+++ Solving for load factor $factor in step $istep of $nsteps +++\n")
uh = step(uh,factor)
dh = project(d,trian,quad,order)
rh = project(r,trian,quad,order)
writevtk(
trian,"results_$(lpad(istep,3,'0'))",
cellfields=["uh"=>uh,"epsi"=>ε(uh),"damage"=>dh,
"threshold"=>rh,"sigma_elast"=>σe(ε(uh))])
end
end
Run!
main(n=6,nsteps=20)
Results
Animation of the load history using for main(n=8,nsteps=30)
This page was generated using Literate.jl.