Tutorial 5: Hyper-elasticity
This tutorial is under construction, but the code below is already functional.
Problem statement
using Gridap
using LinearAlgebra: inv, det
using LineSearches: BackTrackingMaterial parameters
const λ = 100.0
const μ = 1.0Deformation Gradient
F(∇u) = one(∇u) + ∇u'
J(F) = sqrt(det(C(F)))
#Green strain
#E(F) = 0.5*( F'*F - one(F) )
@law dE(∇du,∇u) = 0.5*( ∇du⋅F(∇u) + (∇du⋅F(∇u))' )Right Cauchy-green deformation tensor
C(F) = (F')⋅FConstitutive law (Neo hookean)
@law function S(∇u)
Cinv = inv(C(F(∇u)))
μ*(one(∇u)-Cinv) + λ*log(J(F(∇u)))*Cinv
end
@law function dS(∇du,∇u)
Cinv = inv(C(F(∇u)))
_dE = dE(∇du,∇u)
λ*(Cinv⊙_dE)*Cinv + 2*(μ-λ*log(J(F(∇u))))*Cinv⋅_dE⋅(Cinv')
endCauchy stress tensor
@law σ(∇u) = (1.0/J(F(∇u)))*F(∇u)⋅S(∇u)⋅(F(∇u))'Weak form
res(u,v) = dE(∇(v),∇(u)) ⊙ S(∇(u))
jac_mat(u,du,v) = dE(∇(v),∇(u)) ⊙ dS(∇(du),∇(u))
jac_geo(u,du,v) = ∇(v) ⊙ ( S(∇(u))⋅∇(du) )
jac(u,du,v) = jac_mat(u,v,du) + jac_geo(u,v,du)Model
domain = (0,1,0,1)
partition = (20,20)
model = CartesianDiscreteModel(domain,partition)Define new boundaries
labels = get_face_labeling(model)
add_tag_from_tags!(labels,"diri_0",[1,3,7])
add_tag_from_tags!(labels,"diri_1",[2,4,8])Construct the FEspace
V = TestFESpace(
model=model,valuetype=VectorValue{2,Float64},
reffe=:Lagrangian,conformity=:H1,order=1,
dirichlet_tags = ["diri_0", "diri_1"])Setup integration
trian = Triangulation(model)
degree = 2
quad = CellQuadrature(trian,degree)Setup weak form terms
t_Ω = FETerm(res,jac,trian,quad)Setup non-linear solver
nls = NLSolver(
show_trace=true,
method=:newton,
linesearch=BackTracking())
solver = FESolver(nls)
function run(x0,disp_x,step,nsteps)
g0 = VectorValue(0.0,0.0)
g1 = VectorValue(disp_x,0.0)
U = TrialFESpace(V,[g0,g1])
#FE problem
op = FEOperator(U,V,t_Ω)
println("\n+++ Solving for disp_x $disp_x in step $step of $nsteps +++\n")
uh = FEFunction(U,x0)
uh, = solve!(uh,solver,op)
writevtk(trian,"results_$(lpad(step,3,'0'))",cellfields=["uh"=>uh,"sigma"=>σ(∇(uh))])
return get_free_values(uh)
end
function runs()
disp_max = 0.75
disp_inc = 0.02
nsteps = ceil(Int,abs(disp_max)/disp_inc)
x0 = zeros(Float64,num_free_dofs(V))
for step in 1:nsteps
disp_x = step * disp_max / nsteps
x0 = run(x0,disp_x,step,nsteps)
end
end
#Do the work!
runs()Picture of the last load step 
Extension to 3D
Extending this tutorial to the 3D case is straightforward. It is leaved as an exercise.

This page was generated using Literate.jl.