
Brief overview of the main features of Julia

A 21st century programming language for scientific computing

Dr. Alberto F. Martín - alberto.f.martin@anu.edu.au
School of Computing, Australian National University, Canberra, 28th Nov 2023

Outline - Overview of Julia features

The Julia programming language

Why is Julia great?

The two language problem

Julia main features

map, anonymous functions, and do-block syntax

Some practical aspects

Dr. Alberto F. Martín · 2023 2/17

The Julia programming language

Julia is a 21st century, open-source, multi-platform, high-level, interactive,
high-performance programming language for technical computing

The Julia REPL

Developed at MIT by J. Bezanson, A. Edelman, S.Karpinski, V. Shah
First released in 2012
First stable release (i.e., v1.0) in 2018
Current release is 1.9.4 (Nov, 2023)
High momentum, thriving community (∼ 104 packages registered)
∼ two minor releases per year (+3-5 patch releases per minor)

Dr. Alberto F. Martín · 2023 3/17

https://julialang.org/
https://epubs.siam.org/doi/10.1137/141000671
https://juliahub.com/ui/Packages

Why is Julia great for scientific computing?

It is fast – It is indeed very fast!
Good performance on par with C/C++ or Fortran
No need for vectorization as, e.g., in Python (for loops are fast!)
Click here for an independent benchmark of Julia vs other languages

It has a friendly syntax
Very easy to install

Cumbersome tools such as automake or CMake no longer required

Solves the two-language problem (more on next slide)
Easy to prototype new algorithms that are fast out-of-the-box
Remarkable balance among expressivity/productivity/performance

Support for Unicode and LATEXcharacters (not just a cosmetic feature)
Example: bye bye alpha or beta as variable names, welcome α and β

Dr. Alberto F. Martín · 2023 4/17

https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/julia-gcc.html
https://www.gnu.org/software/automake/manual/html_node/index.html
https://cmake.org/

Two-language problem

Julia solves the two-language problem!

One language to prototype, another for production

One language for users, another for under-the-hood (developers)
Prototype/interface language (typically interpreted):

Easy to learn and use
Interactive
Productive
But ... slow!
Examples: Python, Matlab, R, . . .

Production/developers language (typically compiled):
Fast!
But ... complicated/verbose/viscous/non-interactive!
Examples: C, C++, Fortran, Java, . . .

Many state-of-the-art finite element libraries suffer from the
two-language problem (e.g., Fenics, Firedrake, deal.II, OpenFOAM, . . .)

Dr. Alberto F. Martín · 2023 5/17

How all these can be fulfilled? Julia features at a glance

Just-In-Time (JIT) compilation (compilation occurs at run-time!)

Dynamic typing and type inference

Multiple type dispatching and specialization

Garbage collection (memory leak free)

Extensible design, rich/expressive built-in abstract types/interfaces
(e.g., AbstractArray{T,N})

User-defined types are as fast and compact as built-ins
Supports type parameterization (similar to C++ templates)

Metaprogramming (Julia code can be generated using Julia)
Designed for parallelism and distributed computation

Only JIT-compiled language in the Petaflop club (HPCWire, 2017)

Remarkable interoperability with other languages (e.g., Python and C)

Fantastic built-in automated package manager. Rich package ecosystem

CAVEAT: with great power comes great responsibility!
(clueless-written Julia code can perform very poorly)

Dr. Alberto F. Martín · 2023 6/17

https://www.hpcwire.com/off-the-wire/julia-joins-petaflop-club/

Just-in-time (JIT) compilation

In Julia, the first call to a function is (significantly) slower than
subsequent calls within the same REPL session

Known as first call latency (a.k.a. time to first execution)

In production environments (e,g., HPC cluster), can be addressed with
the use of pre-compilation techniques (PackageCompiler.jl package)

Reduction of first call latency is a priority for core developers. Click
here for an interesting article on current state of things and future plans

julia> using Gridap
julia> @time model=CartesianDiscreteModel((0,1,0,1),(10,10))

1.558585 seconds (1.74 M allocations: 102.560 MiB,
1.89% gc time, 99.30% compilation time)

CartesianDiscreteModel()
julia> @time model=CartesianDiscreteModel((0,1,0,1),(10,10))

0.000297 seconds (392 allocations: 41.031 KiB)
CartesianDiscreteModel()

Dr. Alberto F. Martín · 2023 7/17

https://viralinstruction.com/posts/latency/

Dynamic typing and type inference

Julia is a dynamically typed language (programmer not forced to
declare types of variables) – "It feels like an scripting language"
Although dynamically typed, it is still a compiled language, i.e., native
machine code is ultimately generated prior to actual execution
Compilation happens on first touch at run-time – JIT compilation
JIT compiler needs the types of all variables to generate machine code
To this end, Julia uses type inference (prior to compilation):

When applied to function calls, type inference determines types of all
intermediate results and outputs from types of input arguments
It’s a symbolic process, i.e., type inference analyzes flow of types (as
opposed to data flow, which is unknown until code execution)
Can be introspected with, e.g., @code_warntype macro

function square(x)
x*x

end
@code_warntype square(3) # Run type inference
@code_warntype square("3") # Run type inference

Dr. Alberto F. Martín · 2023 8/17

Multiple type dispatching and specialization

In Julia, functions are first-class citizenships separated from objects
A function (can) have many different methods (multi-method functions)

Methods of a function queried with the methods built-in function

The methods of a function differ in the number of parameters and/or their
types (parameters of a method can optionally be type annotated)

On a function call, multiple type dispatch is the process of deciding
which method to call from the set of methods of a function

This decision is based on the types of all function arguments

Methods act as a sort of generic template to be specialized given the
type of the arguments

Specialized code can be seen with @code_llvm (intermediate low level
representation) and @code_native (native machine code)

JuliaCon 2019 presentation on the subject by Stefan Karpinski
The Unreasonable Effectiveness of Multiple Dispatch

Dr. Alberto F. Martín · 2023 9/17

https://www.youtube.com/watch?v=kc9HwsxE1OY

Multiple type dispatching and specialization

foo(bar) = ... # Method declaration statement
foo(bar::Integer) = ... # Method declaration statement
foo(bar::Float64) = ... # Method declaration statement
foo(bar::String,baz::Integer) = ... # Method declaration statement
methods(foo) # foo is a multi-method function w/ 4 methods

function square(x)
x*x

end

Show LLVM machine code (intermediate representation)
@code_llvm square(3)
@code_llvm square("3")

Show native machine code (the one actually executed on the CPU)
@code_native square(3)
@code_native square("hello")

Dr. Alberto F. Martín · 2023 10/17

map, anonymous functions, and do-block syntax

map is a built-in Julia function that lets one apply a function entry-wise to
the elements in a collection to return a new collection
The function may have several arguments; in such a case, we have to
provide to map as many collections as function arguments
Julia allows one to define anonymous functions with the -> syntax
map and anonymous functions can be combined using do-block syntax

map applied to single collection
julia> square(x)=x*x
julia> map(square, [1,2,3])
3-element Vector{Int64}:

1
4
9

map applied to two collections
julia> sum(x,y)=x+y
julia> map(sum, [1,2,3], [4,5,6])
3-element Vector{Int64}:

5
7
9

anonymous function and map
julia> map(x->x*x, [1,2,3])
3-element Vector{Int64}:

1
4
9

Julia's do-block syntax
julia> map([1,2,3]) do x

x*x
end

3-element Vector{Int64}:
1
4
9

Dr. Alberto F. Martín · 2023 11/17

Some practical aspects

Dr. Alberto F. Martín · 2023 12/17

Documentation and Getting Help

Julia is very well-documented

Julia documentation available here

It comprises an excellent manual. USE IT!!!
Julia Discourse

Go-to place in order to get help
Read this before posting

Julia Slack (∼ 15, 000 members)
Dedicated channels (#hpc, #gpu, #machine-learning, . . .)

Stack Exchange and Stack Overflow not so active

Dr. Alberto F. Martín · 2023 13/17

https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/manual/getting-started/
https://discourse.julialang.org/
https://discourse.julialang.org/t/please-read-make-it-easier-to-help-you/14757
https://julialang.org/slack/

Fast-track to Julia from other languages

Although Julia has commonalities with other languages, it is NOT a
clone of any other language, such as, e.g., Python or MATLAB

A comprehensive enumeration of noteworthy differences from other
languages can be found here
For example, compared to Python or C/C++:

Array indexing in Julia is 1-based not 0-based
Julia arrays are stored in column-major order (as in Fortran)
Julia is NOT an object-oriented language
No classes (methods bundled to objects); no multiple inheritance

Cheat Sheets available at the workshop’s references page:
Julia Cheat Sheet
Matlab-Python-Julia Cheat Sheet

Dr. Alberto F. Martín · 2023 14/17

https://docs.julialang.org/en/v1/manual/noteworthy-differences/
https://juliadocs.github.io/Julia-Cheat-Sheet/
https://cheatsheets.quantecon.org/

The Julia package manager (Pkg.jl)

As opposed to, e.g., Python, Julia comes with a built-in package
manager (no more pip , conda , etc.)

It is bundled into the REPL (Pkg documentation)

Prompt of the package manager accessed by typing] on the Julia REPL

It standardizes the installation of new Julia software, and also manages
reproducible environments
An environment is a record of:

Direct package dependencies and compatibilities in Project.toml file
A full list of package dependencies (direct and indirect) and their current
state (package version, git revision, etc.) in Manifest.toml
Manifest.toml is fully auto-generated, Project.toml mostly, but requires
manual edits (e.g., to specify compatibilities)

Project.toml and Manifest.toml combined can be shipped to
third-parties to 100% reproduce the current state of the software

Dr. Alberto F. Martín · 2023 15/17

https://pkgdocs.julialang.org/v1/

How to develop your Julia code?

Mainly two different options/workflows
Option 1: REPL-based workflow

Combine your editor of choice (e.g. vim) and the REPL
BIG WARNING: Use Revise.jl package!
You can install Revise.jl in the global environment, and all other
environments will inherit it

Option 2: Use VSCode IDE with Julia extension (this workshop)
Matlab-ish experience (e.g., workspace browser, debugger . . .)
Powerful built-in debugger. Users’ guide here
Native support for Jupyter notebooks (e.g., JuliaTutorials)
Embedded results (e.g., plots, profiler, databases)
Supports remote development (e.g., on Gadi) with SSH extension
Collaborative sessions: A “Google Docs” experience with integrated audio
and text chat

Dr. Alberto F. Martín · 2023 16/17

https://docs.julialang.org/en/v1/manual/workflow-tips/
https://github.com/timholy/Revise.jl
https://www.julia-vscode.org/docs/stable/userguide/debugging/
https://github.com/JuliaAcademy/JuliaTutorials
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/learn/collaboration/live-share

Some final important resources

Style guide for writing Julia codes available here

Comprehensive list of performance tips available here

BenchmarkTools.jl provides tools for statistical measurement of code
performance and memory footprint (e.g. @btime macro)

Julia provides built-in profiling capabilities through Profile module
(Documentation available here)
The package ProfileView.jl can be used to visualize profile data
using the so-called FlameGraphs

Click here for an explanation of color code map

Dr. Alberto F. Martín · 2023 17/17

ttps://docs.julialang.org/en/v1/manual/style-guide/
https://docs.julialang.org/en/v1/manual/performance-tips/
https://github.com/JuliaCI/BenchmarkTools.jl
https://docs.julialang.org/en/v1/manual/profile/#Basic-usage
https://github.com/timholy/ProfileView.jl
https://timholy.github.io/FlameGraphs.jl/stable/reference/#FlameGraphs.FlameColors

