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Introduction
Probably, you are familiar with the strong form of PDEs
Example: Poisson equation

−∇∇∇ · (κ∇∇∇u) = f in Ω, u = g on ΓD − κ∇∇∇u · n = h on ΓN

▶ Ω ⊂ RD is the physical domain,
▶ ΓD is the Dirichlet boundary,
▶ ΓN is the Neumann boundary

The strong form is used in finite difference methods

3 of 50



Weak form

PDEs can alternatively be written in weak form

Procedure:
1. Multiply the strong form by a test function v

2. Integrate by parts
3. Apply boundary conditions

−
∫
Ω
v∇∇∇ · (κ∇∇∇u) =

∫
Ω
∇∇∇v · (κ∇∇∇u)−

∫
∂Ω

vκ∇∇∇u · n =

∫
Ω
∇∇∇v · (κ∇∇∇u)−

∫
ΓN

vh

using that v = 0 on ΓD and κ∇∇∇u ·nnn = h on ΓN
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Weak form (II)

Example: Poisson equation

Find u ∈ V D :

∫
Ω
∇∇∇v · (κ∇∇∇u) =

∫
Ω
vf +

∫
ΓN

vh, ∀v ∈ V 0

where V is a function space (crucial for well-posedness) and

V D = {v ∈ V : v = g on ΓD}, V 0 = {v ∈ V : v = 0 on ΓD}

are the trial and test spaces, respectively

The weak form is used in finite element methods
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Function spaces

The weak form is a variational solution of a quadratic functional

u = arg min
u∈V D

J(u), J(u) =

∫
Ω
κ|∇∇∇u|2 −

∫
Ω
uf −

∫
ΓN

uh

It makes sense to consider V as the space in which J(u) < ∞ (well-defined)

V = H1(Ω) = {u(x) :

∫
Ω
|∇∇∇u|2 < ∞}

▶ V is an infinite-dimensional space of functions
▶ We need to discretize the problem to obtain a finite-dimensional system of

equations (e.g., using polynomials)
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Spectral approximation

Approximate V by the polynomial space of order p

Pp = {1, x, x2, . . . , xp}

▶ Hard to deal with geometries that are not boxes
▶ It exploits the smoothness of the solution (Taylor expansion)
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Finite element spaces
Consider a mesh Mh, i.e., a partition of Ω into elements / cells (segments,
triangles or quadrilaterals, tetrahedra or hexahedra, etc.)
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FEM space
A finite element space Vh ⊂ V is a space of piecewise polynomials of order p
defined on Mh

Vh
.
= {vh ∈ V : vh|K ∈ Pp, ∀K ∈ Mh}
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Reference FE

A reference FE is composed of:
▶ A polytope (triangle, square, etc), the reference cell K̂
▶ A reference FE space V̂ of polynomials on K̂

▶ The degrees of freedom (DOFs) that define the shape functions basis for V̂
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Lagrangian 1D (SEGMENT)

▶ K̂ = [0, 1],
▶ V̂ = {1, x, x2, . . . , xp} = Pp,
▶ DOFs: Nodal values at {0, 1/p, 2/p, . . . , 1}
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Lagrangian 2D (TRI)

▶ Triangle with vertices (0, 0), (1, 0), (0, 1)
▶ Pp = {1, x, y, x2, xy, y2, . . .} (tensor product)
▶ DOFs: Nodal values
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Lagrangian 2D (QUAD)
▶ K̂ = [0, 1]2,
▶ Qp = {1, x, y, xy, x2, x2y, x2y2, . . .}
▶ DOFs: Nodal values
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From reference to physical space

▶ A geometric map ΦK : K̂ → K
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From reference to physical space

▶ The space to the physical cell K is

VK = {v ◦ Φ−1
K : v ∈ Pp(K̂)}
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Conformity

Still, there is part of the definition that is not covered:

Vh
.
= {vh ∈ V : vh|K ∈ Pp, ∀K ∈ Mh}

▶ A discontinuous piecewise polynomial is not in H1(Ω)

▶
∫
Ω∇∇∇uh is not bounded

▶ Piecewise polynomials in C0(Ω) are in H1(Ω)

15 of 50



Enforcing continuity
We must enforce continuity for Vh ⊂ H1(Ω)

Vh
.
= {vh ∈ C0(Ω) : vh|K ∈ Pp, ∀K ∈ Mh}

Using Lagrangian FEs, we just assemble / glue together DOFs of adjacent cells
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FE Basis
Let us split the Lagrangian nodes N of the FE space Vh into free nodes NF (on
Ω ⊂ ΓD) and Dirichlet nodes ND (on ΓD)

For each node i ∈ N , we can consider the shape functions (Lagrangian nodes)

ϕi(xxxj) = δij =

{
1 if i = j

0 if i ̸= j

It returns a basis of Vh = {ϕ1, . . . , ϕNF , ϕNF+1, . . . , ϕNF+ND}
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Galerkin + FEM

FE discretisation of the Poisson equation (using Galerkin method)

Find uh ∈ V D
h :

∫
Ω
∇∇∇vh · (κ∇∇∇uh) =

∫
Ω
vhf +

∫
ΓN

vhh, ∀vh ∈ V 0
h

where Vh is a function space (crucial for well-posedness) and

V D
h = {vh ∈ Vh : vh = g at nodes on ΓD}, V 0 = {vh ∈ Vh : vh = 0 at nodes on ΓD}

are the trial and test FE spaces, respectively
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Trial/test FE basis
▶ Test space: A basis for V 0

h = {ϕ1, . . . , ϕNF }
▶ Trial space: Any function uh ∈ V D

h can be written as

uh = u0h + uDh , u0h =

NF∑
i=1

uiϕi ∈ V 0
h , uDh =

NF+ND∑
i=NF+1

g(xxxi)ϕ
i

where uDh is data (g is given) and u ∈ RNF is the unknown vector of
coefficients
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Linear system (I)

▶ Galerkin formulation:

Find uh ∈ V D
h :

∫
Ω
∇∇∇vh · (κ∇∇∇uh) =

∫
Ω
vhf +

∫
ΓN

vhh, ∀vh ∈ V 0
h

▶ Using the FE basis for the test space

Find uh ∈ V D
h :

∫
Ω
∇∇∇ϕi · (κ∇∇∇uh) =

∫
Ω
ϕif +

∫
ΓN

ϕih, ∀i = 1, . . . , NF
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Linear system (I)

▶ Galerkin formulation:

Find uh ∈ V D
h :

∫
Ω
∇∇∇vh · (κ∇∇∇uh) =

∫
Ω
vhf +

∫
ΓN

vhh, ∀vh ∈ V 0
h

▶ Using the decomposition uh = u0h + uDh

Find u ∈ RNF :

[∫
Ω
∇∇∇ϕi · (κ∇∇∇ϕj)

]
uj =

∫
Ω
ϕif +

∫
ΓN

ϕih−
∫
Ω
∇∇∇ϕi · (κ∇∇∇uDh ),

∀i = 1, . . . , NF

▶ We end up with a linear system to be solved Au = b
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Linear system(II)
▶ One can compute all the integrals using a quadrature rule Q at the reference

element, e.g.,

∫
Ω
∇∇∇ϕi · (κ∇∇∇ϕj) =

∑
K∈Mh

∫
K̂
J−T
K ∇̂∇∇ϕ̂i · (κJ−T

K ∇̂∇∇ϕ̂j) det(JK)

=
∑

K∈Mh

∑
x̂xxgp∈Q

J−T
K ∇̂∇∇ϕ̂i · (κ ◦ ΦKJ−T

K ∇̂∇∇ϕ̂j) det(JK)|x̂xxgp
wgp

where Jk =∇∇∇ΦK .
▶ Usually, we use a Gaussian quadrature Q that integrates exactly the matrix

terms of the linear system
▶ The degree of the quadrature is the maximum order of a polynomial that can

be integrated exactly (e.g., 2p for FE spaces of order p and a linear
geometrical map)
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Linear system (III)

▶ We have started with a PDE in weak form (∞ dimensional space V )
▶ Using a FE space Vh (finite dimensional polynomial space) we have

transformed it into a linear system Au = b

▶ This approximation comes with the price of a numerical error
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Bounds for numerical errors

Let us define the L2 and H1 norms of a function u

∥u∥H1(Ω) =

(∫
Ω
u2

)1/2

, ∥u∥H1(Ω) =

(∫
Ω
|∇∇∇u|2 +

∫
Ω
u2

)1/2

,

▶ The discretisation error eh = u− uh can be bounded by

∥eh∥H1(Ω) ≤ Chq∥u∥Hq+1(Ω), ∥eh∥L2(Ω) ≤ Chq+1∥u∥Hq+1(Ω)

for any q ≤ p, where h is the mesh size and p is the order of the FE space
▶ The Hp+1 norm means the L2-norm of all the derivatives up to p+ 1 (requires

smoothness)
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Bounds for numerical errors (II)

Assuming the solution is smooth enough (q = p),

∥eh∥H1(Ω) ≤ Cuh
p, ∥eh∥L2(Ω) ≤ Cuh

p+1

Thus,

log ∥eh∥H1(Ω) ≤ C + p log h, log ∥eh∥L2(Ω) ≤ C + (p+ 1) log h

We can check these bounds experimentally in the tutorials
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Linear elasticity

Linear elasticity (strong form):
−∇∇∇ · σσσ(uuu) = fff in Ω,

uuu = ggg on ΓD,

σσσ(uuu) ·nnn = hhh on ΓN.

where uuu is the displacement vector and σσσ(uuu) is the stress 2-tensor defined as

σσσ(uuu)
.
= λ tr(εεε(uuu)) I + 2µ εεε(uuu), εεε(uuu)

.
=

1

2

(
∇∇∇uuu+ (∇∇∇uuu)T

)
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Weak form (elasticity)

Times vvv the strong form and integrate by parts:

∫
Ω
vvv · (∇∇∇ · σσσ(uuu)) =

∫
Ω
∇∇∇vvv : σσσ(uuu)−

∫
∂Ω

vvv · σσσ(uuu) ·nnn =

∫
Ω
∇∇∇vvv : σσσ(uuu)−

∫
ΓN

vvv · σσσ(uuu) ·nnn

=

∫
Ω
εεε(vvv) : σσσ(uuu)−

∫
ΓN

vvv · hhh
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Weak form (elasticity)

We get the weak form:

Find uuu ∈ VVV D :

∫
Ω
εεε(vvv) : σσσ(uuu) =

∫
Ω
vvv · fff +

∫
ΓN

vvv · hhh, ∀vvv ∈ VVV 0

▶ VVV = [H1(Ω)]D (Korn’s inequality),
▶ VVV D = {vvv ∈ VVV : vvv = ggg on ΓD} is the trial space
▶ VVV 0 = {vvv ∈ VVV : vvv = 000 on ΓD} is the test space
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Finite element space

▶ We want a FE space VVV h ⊂ VVV = [H1
0 (Ω)]

D

▶ Same conformity, i.e., VVV h ⊂ [C0(Ω)]D

▶ VVV h = [Vh]
D, where Vh is the scalar FE space of the previous section

▶ All the ideas in the previous section readily apply for each component
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Nonlinear problems
Let us consider a nonlinear model problem, p-Laplacian:

−∇∇∇ · (|∇∇∇u|p−2∇∇∇u) = f in Ω, u = g on ∂Ω

where p ≥ 2 is a given parameter

The weak form is

Find u ∈ V D :

∫
Ω
|∇∇∇u|p−2∇∇∇u · ∇∇∇v =

∫
Ω
fv, ∀v ∈ V 0

▶ Same conformity as Poisson, V D = H1(Ω)
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Newton’s method

▶ Nonlinear problem wrt u
▶ One can use Newton’s method to solve it
▶ We want to solve f(u) = 0 iteratively
▶ Using the fact that f(u+ δu) ≈ f(u) + f ′(u)δu

▶ Given ui

f ′(ui)δui+1 = −f(ui), ui+1 = ui + δui+1

till convergence
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Residual and Jacobian
We better state the problem in terms of the residual:

u ∈ V D : r(u, v) =

∫
Ω
∇v ·

(
|∇u|p−2 ∇u

)
dΩ−

∫
Ω
v f dΩ = 0, ∀v ∈ V 0

We compute the variation of the residual wrt a given direction δu ∈ V 0 at u ∈ V D

r(u+ δu, v) ≈ r(u, v) +
∂r(u, v)

∂u
δu

where j(∂u, u, v) = ∂r(u,v)
∂u is the Jacobian evaluated at u ∈ Ug, which is the

bilinear form

[j(u, v)δu =

∫
Ω
∇v ·

(
|∇u|p−2 ∇δu

)
dΩ+(p−2)

∫
Ω
∇v ·

(
|∇u|p−4(∇u · ∇δu)∇u

)
dΩ.
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Discrete problem

Using Newton + FEM:

Find δui+1
h ∈ V 0

h : j(δui+1
h , uih, vh) = −r(uih, vh), ∀vh ∈ V 0

h

▶ j(δui+1
h , uih, vh) is a linear system to be solved at each nonlinear iteration

▶ After linearisation, we can apply the same ideas as in the previous section
▶ We can compute the expression of the Jacobian by hand or using automatic

differentiation
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Heat equation in weak form:

Find u ∈ V D :

∫
Ω
v∂tu+

∫
Ω
∇∇∇v · (κ∇∇∇u) =

∫
Ω
vf +

∫
ΓN

vh, ∀v ∈ V 0

Semi-discretised problem (using ideas above, only discretise in space):

Mu̇+Au = b, u̇ = −M−1Au+M−1b

▶ Mij =
∫
ϕi(xxx)ϕj(xxx) is the mass matrix

▶ Aij =
∫
κ(xxx)∇∇∇ϕi(xxx) · ∇∇∇ϕj(xxx) is the stiffness matrix

▶ b is the load vector
▶ u is the vector of unknowns

36 of 50



Time discretisation: Create a 1D partition of the time interval [0, T ],
Th = {0 = t0 < t1 < . . . < tN = T}, with ∆t = tn+1 − tn and tn = n∆t.
▶ Backward Euler (Implicit, 1st order)

M
un+1 − un

∆t
+Aun+1 = b, (M+∆tA)un+1 = ∆tb+Mun

▶ Crank-Nicolson (Implicit, 2nd order)

M
un+1 − un

∆t
+Aun+1/2 = b, (M+∆t/2A)un+1/2 = ∆t/2b+Mun

where un+1/2 = 1/2(un+1 + un)

▶ Forward Euler (Explicit, 1st order, conditionally stable, ∆t < Ch2 )

M
un+1 − un

∆t
+Aun = b, Mun+1 = ∆tb+Mun −Aun

▶ Runge-Kutta methods (implicit, explicit, IMEX), ...
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Computational cost

▶ Solve a linear system at each time step
▶ Implicit methods, system matrix M+ c∆tA

▶ Explicit methods, system matrix M+ (much cheaper, better conditioned, but
stringent condition for stability)
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Stokes problem

Strong form: Find uuu ∈ VVV D and p ∈ Q such that
−∇∇∇ · µεεε(uuu) +∇∇∇p = fff in Ω,

∇∇∇ · uuu = 0 in Ω,

uuu = ggg on ΓD,

µεεε(uuu) ·nnn− pnnn = hhh on ΓN .
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Stokes problem

Testing with vvv ∈ VVV 0 and integrating by parts

−
∫
Ω
vvv∇∇∇ · µεεε(uuu) =

∫
Ω
∇∇∇vvv : µεεε(uuu)−

∫
ΓN

vvv · µεεε(uuu) ·nnn

=

∫
Ω
µεεε(vvv) : εεε(uuu)−

∫
ΓN

vvv · µεεε(uuu) ·nnn

In order to have the right stresses on the Neumann boundary, we integrate by
parts the pressure term∫

Ω
∇∇∇p · vvv = −

∫
Ω
p∇∇∇ · vvv +

∫
ΓN

pvvv ·nnn
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Weak form

Adding together with mass conservation, we get the weak form: find uuu ∈ VVV D and
p ∈ Q such that∫

Ω
µεεε(vvv) : εεε(uuu)−

∫
Ω
p∇∇∇ · vvv +

∫
Ω
q∇∇∇ · uuu =

∫
Ω
vvv · fff +

∫
ΓN

vvv · hhh, ∀vvv ∈ VVV 0, ∀q ∈ Q

▶ VVV = [H1(Ω)]D (Korn’s inequality),
▶ VVV D = {vvv ∈ VVV : vvv = ggg on ΓD} is the trial space
▶ VVV 0 = {vvv ∈ VVV : vvv = 000 on ΓD} is the test space
▶ Q = L2(Ω) (no derivatives, no continuity required in FEM)
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L2-conformity
▶ We need to define a FE space Qh ⊂ Q = L2(Ω)

Qh = {qh ∈ L2(Ω) : qh|K ∈ Pp(K) or Qp(K) ∀K ∈ Mh}

▶ No inter-element continuity required by L2(Ω)

▶ Simplified version of the previous section (not gluing required)
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Mixed FEM

▶ We can use discontinuous FE spaces
▶ We can use continuous FE spaces too
▶ However, we need to satisfy the so-called inf-sup stability condition
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Mixed FEM (II)

Suitable spaces for the Stokes problem:
▶ Tris/Tets: Pk × Pk−1 Taylor-Hood element, k ≥ 2

▶ Quads/Hexs: Qk ×Qk−1 Taylor-Hood element, k ≥ 2

▶ Quads/Hexs: Qk+1 × P−
k , k ≥ 2

Note: P−
k means discontinuous polynomials of degree k (analogously for Q−

k )
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Darcy equation

Strong form: Find uuu ∈ VVV D and p ∈ Q such that
uuu+ κ∇∇∇p = 000 in Ω,

∇∇∇ · uuu = f in Ω,

uuu ·nnn = ggg on ΓD,

p = g on ΓN .
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Weak form

Weak form: find (u, p) ∈ H(div; Ω)×L2(Ω) such that a((u, p), (v, q)) = b(v, q) for all
(v, q) ∈ H(div; Ω)× L2(Ω), where

a((u, p), (v, q))
.
=

∫
Ω
v · u dΩ−

∫
Ω
(∇ · v) p dΩ +

∫
Ω
q (∇ · u) dΩ,

b(v, q)
.
=

∫
Ω
q f dΩ−

∫
ΓN

(v · n) g dΓ.

▶ Only control on ∇∇∇ · uuu needed
▶ It only implies continuity of uuu ·nnn on element boundaries
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Div-conforming FEM

▶ RT k = [Pk]
D + xxxPk

▶ BDMk = [Pk]
D

▶ RT k = Qk+1,k ×Qk,k+1

▶ DOFs are normal fluxes on the faces of the
elements (for div-conformity) + ...
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Stable pairs

Stable flux / pressure spaces:
▶ Tris/tets: RT k × P−

k

▶ Tri/tets: BDMk+1 × P−
k

▶ Quads/hex: RT k ×Q−
k

Inf-sup condition
There exists β > 0 such that

inf
q∈Qh

sup
vvv∈VVV 0

h

∫
Ω q∇∇∇ · vvv

∥vvv∥H1(Ω)∥q∥L2(Ω)
≥ β

Analogously for curl operator (Maxwell equations, not covered in this tutorial)
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