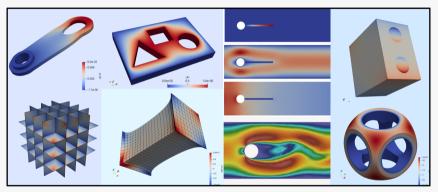
Introduction to the finite element method



Santiago Badia, Monash University Tutorial at NCI | Canberra 2023-11-27

> MONASH University

Introduction to FEM

Elasticity

Nonlinear problems

Time-dependent problems

Multifield problems

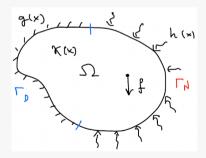
Div-conforming FEM

Introduction

Probably, you are familiar with the strong form of PDEs Example: Poisson equation

$$-\nabla \cdot (\kappa \nabla u) = f$$
 in Ω , $u = g$ on Γ_D $-\kappa \nabla u \cdot n = h$ on Γ_N

- $\Omega \subset \mathbb{R}^D$ is the physical domain,
- Γ_D is the Dirichlet boundary,
- Γ_N is the Neumann boundary



Weak form

PDEs can alternatively be written in weak form

Procedure:

- 1. Multiply the strong form by a test function v
- 2. Integrate by parts
- 3. Apply boundary conditions

$$-\int_{\Omega} v \nabla \cdot (\kappa \nabla u) = \int_{\Omega} \nabla v \cdot (\kappa \nabla u) - \int_{\partial \Omega} v \kappa \nabla u \cdot n = \int_{\Omega} \nabla v \cdot (\kappa \nabla u) - \int_{\Gamma_N} v h$$

using that v = 0 on Γ_D and $\kappa \nabla u \cdot \boldsymbol{n} = h$ on Γ_N

Weak form (II)

Example: Poisson equation

$$\mathsf{Find}\; u \in V^D \; : \; \int_{\Omega} \mathbf{\nabla} v \cdot (\kappa \mathbf{\nabla} u) = \int_{\Omega} v f + \int_{\Gamma_N} v h, \quad \forall v \in V^0$$

where V is a function space (crucial for well-posedness) and

$$V^{D} = \{ v \in V : v = g \text{ on } \Gamma_{D} \}, \qquad V^{0} = \{ v \in V : v = 0 \text{ on } \Gamma_{D} \}$$

are the trial and test spaces, respectively

The weak form is used in finite element methods

Function spaces

The weak form is a variational solution of a quadratic functional

$$u = \arg\min_{u \in V^D} J(u), \qquad J(u) = \int_{\Omega} \kappa |\nabla u|^2 - \int_{\Omega} uf - \int_{\Gamma_N} uh$$

It makes sense to consider V as the space in which $J(u) < \infty$ (well-defined)

$$V = H^1(\Omega) = \{u(x) : \int_{\Omega} |\nabla u|^2 < \infty\}$$

- V is an infinite-dimensional space of functions
- We need to discretize the problem to obtain a finite-dimensional system of equations (e.g., using polynomials)

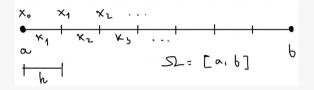
Approximate V by the polynomial space of order p

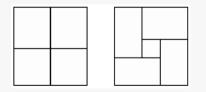
$$\mathcal{P}_p = \{1, x, x^2, \dots, x^p\}$$

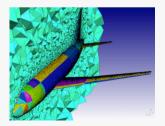
- Hard to deal with geometries that are not boxes
- It exploits the smoothness of the solution (Taylor expansion)

Finite element spaces

Consider a **mesh** M_h , i.e., a partition of Ω into elements / cells (segments, triangles or quadrilaterals, tetrahedra or hexahedra, etc.)



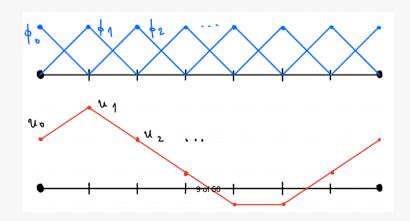




FEM space

A finite element space $V_h \subset V$ is a space of piecewise polynomials of order p defined on \mathcal{M}_h

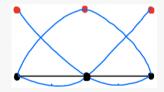
$$V_h \doteq \{ v_h \in V : v_h |_K \in \mathcal{P}_p, \quad \forall K \in \mathcal{M}_h \}$$



A reference FE is composed of:

- A polytope (triangle, square, etc), the reference cell \hat{K}
- A reference FE space $\hat{\mathcal{V}}$ of polynomials on \hat{K}
- ▶ The degrees of freedom (DOFs) that define the *shape functions* basis for $\hat{\mathcal{V}}$

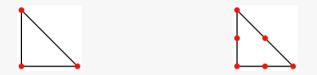
Lagrangian 1D (SEGMENT)



1

Lagrangian 2D (TRI)

- ▶ Triangle with vertices (0,0), (1,0), (0,1)
 ▶ P_p = {1, x, y, x², xy, y², ...} (tensor product)
- DOFs: Nodal values

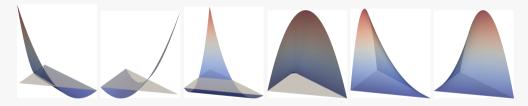


Lagrangian 2D (TRI)

- ► Triangle with vertices (0,0), (1,0), (0,1)
- $\mathcal{P}_p = \{1, x, y, x^2, xy, y^2, \ldots\}$ (tensor product)
- DOFs: Nodal values

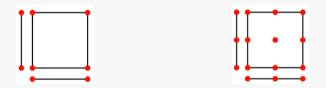
Lagrangian 2D (TRI)

- Triangle with vertices (0,0), (1,0), (0,1)
- $\mathcal{P}_p = \{1, x, y, x^2, xy, y^2, \ldots\}$ (tensor product)
- DOFs: Nodal values



Lagrangian 2D (QUAD)

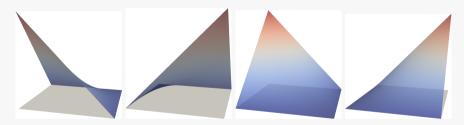
- $\hat{K} = [0, 1]^2,$ $\mathcal{Q}_p = \{1, x, y, xy, x^2, x^2y, x^2y^2, \ldots\}$
- DOFs: Nodal values



Lagrangian 2D (QUAD)

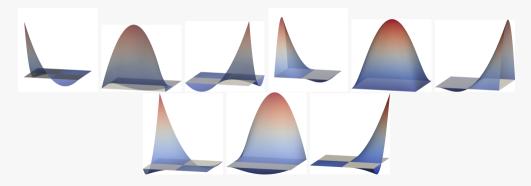
•
$$\hat{K} = [0, 1]^2$$
,
• $Q_p = \{1, x, y, xy, x^2, x^2y, x^2y^2, \ldots\}$

DOFs: Nodal values



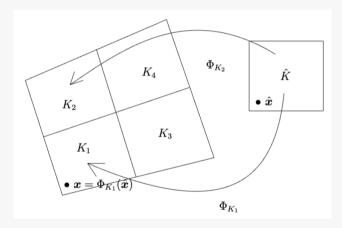
Lagrangian 2D (QUAD)

- ▶ $\hat{K} = [0, 1]^2$,
- $Q_p = \{1, x, y, xy, x^2, x^2y, x^2y^2, \ldots\}$
- DOFs: Nodal values



From reference to physical space

• A geometric map $\Phi_K : \hat{K} \to K$



From reference to physical space

▶ The space to the physical cell *K* is

$$V_{K} = \{ v \circ \Phi_{K}^{-1} : v \in \mathcal{P}_{p}(\hat{K}) \}$$

$$\hat{v} \doteq \text{span} \{ \hat{b}^{1}, \hat{b}^{2}, \hat{b}^{3}, \hat{b}^{4} \}$$

$$\hat{v} \doteq \text{span} \{ b^{1}, b^{2}, b^{3}, b^{4} \},$$
where $b^{i}(\boldsymbol{x}) \doteq \hat{b}^{i} \circ \Phi_{K}^{-1}(\boldsymbol{x})$

$$\hat{K}$$

$$\hat{k}$$

$$\hat{\phi}^{3}$$

$$\hat{k}$$

$$\hat{k}$$

$$\hat{v} \doteq \hat{v} + \hat{v}$$

14 of 50

 Φ_K

Conformity

Still, there is part of the definition that is not covered:

$$V_h \doteq \{ v_h \in V : v_h |_K \in \mathcal{P}_p, \quad \forall K \in \mathcal{M}_h \}$$

• A discontinuous piecewise polynomial is not in $H^1(\Omega)$

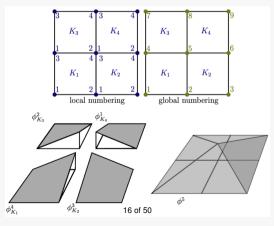
- $\int_{\Omega} \nabla u_h$ is not bounded
- Piecewise polynomials in $C^0(\Omega)$ are in $H^1(\Omega)$

Enforcing continuity

We must enforce continuity for $V_h \subset H^1(\Omega)$

$$V_h \doteq \{ v_h \in C^0(\Omega) : v_h |_K \in \mathcal{P}_p, \quad \forall K \in \mathcal{M}_h \}$$

Using Lagrangian FEs, we just assemble / glue together DOFs of adjacent cells



FE Basis

Let us split the Lagrangian nodes \mathcal{N} of the FE space V_h into free nodes \mathcal{N}_F (on $\Omega \subset \Gamma_D$) and Dirichlet nodes \mathcal{N}_D (on Γ_D)

For each node $i \in \mathcal{N}$, we can consider the shape functions (Lagrangian nodes)

$$\phi^{i}(\boldsymbol{x}_{j}) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

It returns a basis of $V_h = \{\phi^1, \dots, \phi^{N_F}, \phi^{N_F+1}, \dots, \phi^{N_F+N_D}\}$

Galerkin + FEM

FE discretisation of the Poisson equation (using Galerkin method)

Find
$$u_h \in V_h^D$$
: $\int_{\Omega} \nabla v_h \cdot (\kappa \nabla u_h) = \int_{\Omega} v_h f + \int_{\Gamma_N} v_h h, \quad \forall v_h \in V_h^0$

where V_h is a function space (crucial for well-posedness) and

 $V_h^D = \{v_h \in V_h : v_h = g \text{ at nodes on } \Gamma_D\}, \qquad V^0 = \{v_h \in V_h : v_h = 0 \text{ at nodes on } \Gamma_D\}$

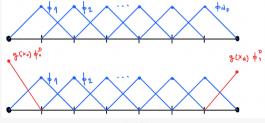
are the trial and test FE spaces, respectively

Trial/test FE basis

- Test space: A basis for $V_h^0 = \{\phi^1, \dots, \phi^{N_F}\}$
- ▶ Trial space: Any function $u_h \in V_h^D$ can be written as

$$u_h = u_h^0 + u_h^D, \qquad u_h^0 = \sum_{i=1}^{N_F} \mathbf{u}^i \phi^i \in V_h^0, \quad u_h^D = \sum_{i=N_F+1}^{N_F+N_D} g(\mathbf{x}_i) \phi^i$$

where u_h^D is data (g is given) and $\mathbf{u} \in \mathbb{R}^{N_F}$ is the unknown vector of coefficients



19 of 50

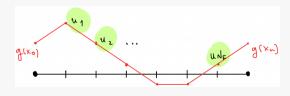
Trial/test FE basis

• Test space: A basis for $V_h^0 = \{\phi^1, \dots, \phi^{N_F}\}$

▶ Trial space: Any function $u_h \in V_h^D$ can be written as

$$u_h = u_h^0 + u_h^D, \qquad u_h^0 = \sum_{i=1}^{N_F} \mathbf{u}^i \phi^i \in V_h^0, \quad u_h^D = \sum_{i=N_F+1}^{N_F+N_D} g(\mathbf{x}_i) \phi^i$$

where u_h^D is data (g is given) and $\mathbf{u} \in \mathbb{R}^{N_F}$ is the unknown vector of coefficients



19 of 50

Linear system (I)

Galerkin formulation:

Find
$$u_h \in V_h^D$$
 : $\int_{\Omega} \nabla v_h \cdot (\kappa \nabla u_h) = \int_{\Omega} v_h f + \int_{\Gamma_N} v_h h, \quad \forall v_h \in V_h^0$

Using the FE basis for the test space

Find
$$u_h \in V_h^D$$
 : $\int_{\Omega} \nabla \phi^i \cdot (\kappa \nabla u_h) = \int_{\Omega} \phi^i f + \int_{\Gamma_N} \phi^i h, \quad \forall i = 1, \dots, N_F$

Linear system (I)

Galerkin formulation:

Find
$$u_h \in V_h^D$$
 : $\int_{\Omega} \nabla v_h \cdot (\kappa \nabla u_h) = \int_{\Omega} v_h f + \int_{\Gamma_N} v_h h, \quad \forall v_h \in V_h^0$

• Using the decomposition $u_h = u_h^0 + u_h^D$

Find
$$\mathbf{u} \in \mathbb{R}^{N_F}$$
 : $\left[\int_{\Omega} \nabla \phi^i \cdot (\kappa \nabla \phi^j)\right] \mathbf{u}^j = \int_{\Omega} \phi^i f + \int_{\Gamma_N} \phi^i h - \int_{\Omega} \nabla \phi^i \cdot (\kappa \nabla u_h^D),$

 $\forall i = 1, \dots, N_F$

 \blacktriangleright We end up with a linear system to be solved $\mathbf{A}\mathbf{u}=\mathbf{b}$

Linear system(II)

One can compute all the integrals using a quadrature rule Q at the reference element, e.g.,

$$\begin{split} \int_{\Omega} \boldsymbol{\nabla} \phi^{i} \cdot (\kappa \boldsymbol{\nabla} \phi^{j}) &= \sum_{K \in \mathcal{M}_{h}} \int_{\hat{K}} J_{K}^{-T} \hat{\boldsymbol{\nabla}} \hat{\phi}^{i} \cdot (\kappa J_{K}^{-T} \hat{\boldsymbol{\nabla}} \hat{\phi}^{j}) \det(J_{K}) \\ &= \sum_{K \in \mathcal{M}_{h}} \sum_{\hat{\boldsymbol{x}}_{\text{gp} \in \mathcal{Q}}} J_{K}^{-T} \hat{\boldsymbol{\nabla}} \hat{\phi}^{i} \cdot (\kappa \circ \Phi_{K} J_{K}^{-T} \hat{\boldsymbol{\nabla}} \hat{\phi}^{j}) \det(J_{K}) |_{\hat{\boldsymbol{x}}_{\text{gp}}} w_{\text{gp}} \end{split}$$

where $J_k = \nabla \Phi_K$.

- Usually, we use a Gaussian quadrature Q that integrates exactly the matrix terms of the linear system
- The degree of the quadrature is the maximum order of a polynomial that can be integrated exactly (e.g., 2p for FE spaces of order p and a linear geometrical map)

Linear system (III)

- We have started with a PDE in weak form (∞ dimensional space V)
- ► Using a FE space V_h (finite dimensional polynomial space) we have transformed it into a linear system Au = b
- This approximation comes with the price of a numerical error

Bounds for numerical errors

Let us define the L^2 and ${\cal H}^1$ norms of a function u

$$||u||_{H^1(\Omega)} = \left(\int_{\Omega} u^2\right)^{1/2}, \qquad ||u||_{H^1(\Omega)} = \left(\int_{\Omega} |\nabla u|^2 + \int_{\Omega} u^2\right)^{1/2},$$

▶ The discretisation error $e_h = u - u_h$ can be bounded by

$$\|e_h\|_{H^1(\Omega)} \le Ch^q \|u\|_{H^{q+1}(\Omega)}, \qquad \|e_h\|_{L^2(\Omega)} \le Ch^{q+1} \|u\|_{H^{q+1}(\Omega)}$$

for any q ≤ p, where h is the mesh size and p is the order of the FE space
The H^{p+1} norm means the L²-norm of all the derivatives up to p + 1 (requires smoothness)

Bounds for numerical errors (II)

Assuming the solution is smooth enough (q = p),

$$||e_h||_{H^1(\Omega)} \le C_u h^p, \qquad ||e_h||_{L^2(\Omega)} \le C_u h^{p+1}$$

Thus,

 $\log \|e_h\|_{H^1(\Omega)} \le C + p \log h, \qquad \log \|e_h\|_{L^2(\Omega)} \le C + (p+1) \log h$

We can check these bounds experimentally in the tutorials

Introduction to FEM

Elasticity

Nonlinear problems

Time-dependent problems

Multifield problems

Div-conforming FEM

Linear elasticity

Linear elasticity (strong form):

$$egin{pmatrix} -oldsymbol{
abla}\cdotoldsymbol{\sigma}(oldsymbol{u}) = oldsymbol{f} ext{ in } \Omega, \ oldsymbol{u} = oldsymbol{g} ext{ on } \Gamma_{
m D}, \ oldsymbol{\sigma}(oldsymbol{u})\cdotoldsymbol{n} = oldsymbol{h} ext{ on } \Gamma_{
m N}. \end{cases}$$

where u is the displacement **vector** and $\sigma(u)$ is the stress 2-tensor defined as

$$\boldsymbol{\sigma}(\boldsymbol{u}) \doteq \lambda \operatorname{tr}(\boldsymbol{\varepsilon}(\boldsymbol{u})) \ I + 2\mu \ \boldsymbol{\varepsilon}(\boldsymbol{u}), \qquad \boldsymbol{\varepsilon}(\boldsymbol{u}) \doteq \frac{1}{2} \left(\boldsymbol{\nabla} \boldsymbol{u} + (\boldsymbol{\nabla} \boldsymbol{u})^T \right)$$

Times v the strong form and integrate by parts:

$$\begin{split} \int_{\Omega} \boldsymbol{v} \cdot (\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\boldsymbol{u})) &= \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\sigma}(\boldsymbol{u}) - \int_{\partial \Omega} \boldsymbol{v} \cdot \boldsymbol{\sigma}(\boldsymbol{u}) \cdot \boldsymbol{n} = \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \boldsymbol{\sigma}(\boldsymbol{u}) - \int_{\Gamma_N} \boldsymbol{v} \cdot \boldsymbol{\sigma}(\boldsymbol{u}) \cdot \boldsymbol{n} \\ &= \int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{v}) : \boldsymbol{\sigma}(\boldsymbol{u}) - \int_{\Gamma_N} \boldsymbol{v} \cdot \boldsymbol{h} \end{split}$$

Weak form (elasticity)

We get the weak form:

$$\mathsf{Find}\; \boldsymbol{u} \in \boldsymbol{V}^D \; : \; \int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{v}) : \boldsymbol{\sigma}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{f} + \int_{\Gamma_N} \boldsymbol{v} \cdot \boldsymbol{h}, \quad \forall \boldsymbol{v} \in \boldsymbol{V}^0$$

•
$$V = [H^1(\Omega)]^D$$
 (Korn's inequality),
• $V^D = \{ v \in V : v = g \text{ on } \Gamma_D \}$ is the trial space
• $V^0 = \{ v \in V : v = 0 \text{ on } \Gamma_D \}$ is the test space

Finite element space

- We want a FE space $\boldsymbol{V}_h \subset \boldsymbol{V} = [H_0^1(\Omega)]^D$
- ▶ Same conformity, i.e., $\boldsymbol{V}_h \subset [C^0(\Omega)]^D$
- ▶ $V_h = [V_h]^D$, where V_h is the scalar FE space of the previous section
- > All the ideas in the previous section readily apply for each component

Elasticity

Nonlinear problems

Time-dependent problems

Multifield problems

Nonlinear problems

Let us consider a nonlinear model problem, p-Laplacian:

$$-\boldsymbol{\nabla} \cdot (|\boldsymbol{\nabla} u|^{p-2} \boldsymbol{\nabla} u) = f \quad \text{in } \Omega, \qquad u = g \quad \text{on } \partial \Omega$$

where $p\geq 2$ is a given parameter

The weak form is

Find
$$u \in V^D$$
 : $\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v = \int_{\Omega} fv, \quad \forall v \in V^0$

Same conformity as Poisson, $V^D = H^1(\Omega)$

Newton's method

- ► Nonlinear problem wrt *u*
- One can use Newton's method to solve it
- We want to solve f(u) = 0 iteratively
- Using the fact that $f(u + \delta u) \approx f(u) + f'(u)\delta u$

 \blacktriangleright Given u^i

$$f'(u^i)\delta u^{i+1} = -f(u^i), \quad u^{i+1} = u^i + \delta u^{i+1}$$

till convergence

Residual and Jacobian

We better state the problem in terms of the residual:

$$u \in V^D : r(u, v) = \int_{\Omega} \nabla v \cdot \left(|\nabla u|^{p-2} \nabla u \right) \, \mathrm{d}\Omega - \int_{\Omega} v \, f \, \mathrm{d}\Omega = 0, \quad \forall v \in V^0$$

We compute the variation of the residual wrt a given direction $\delta u \in V^0$ at $u \in V^D$

$$r(u + \delta u, v) \approx r(u, v) + \frac{\partial r(u, v)}{\partial u} \delta u$$

where $j(\partial u, u, v) = \frac{\partial r(u,v)}{\partial u}$ is the **Jacobian** evaluated at $u \in U_g$, which is the bilinear form

$$[j(u,v)\delta u = \int_{\Omega} \nabla v \cdot \left(|\nabla u|^{p-2} \nabla \delta u \right) \, \mathrm{d}\Omega + (p-2) \int_{\Omega} \nabla v \cdot \left(|\nabla u|^{p-4} (\nabla u \cdot \nabla \delta u) \nabla u \right) \, \mathrm{d}\Omega.$$

Discrete problem

Using Newton + FEM:

Find
$$\delta u_h^{i+1} \in V_h^0$$
 : $j(\delta u_h^{i+1}, u_h^i, v_h) = -r(u_h^i, v_h), \quad \forall v_h \in V_h^0$

- ► $j(\delta u_h^{i+1}, u_h^i, v_h)$ is a linear system to be solved at each nonlinear iteration
- After linearisation, we can apply the same ideas as in the previous section
- We can compute the expression of the Jacobian by hand or using automatic differentiation

Elasticity

Nonlinear problems

Time-dependent problems

Multifield problems

Heat equation in weak form:

$$\mathsf{Find}\; u \in V^D \; : \; \int_{\Omega} v \partial_t u + \int_{\Omega} \nabla v \cdot (\kappa \nabla u) = \int_{\Omega} v f + \int_{\Gamma_N} v h, \quad \forall v \in V^0$$

Semi-discretised problem (using ideas above, only discretise in space):

$$\mathbf{M}\dot{\mathbf{u}} + \mathbf{A}\mathbf{u} = \mathbf{b}, \qquad \dot{\mathbf{u}} = -\mathbf{M}^{-1}\mathbf{A}\mathbf{u} + \mathbf{M}^{-1}\mathbf{b}$$

•
$$\mathbf{M}_{ij} = \int \phi^i(\boldsymbol{x}) \phi^j(\boldsymbol{x})$$
 is the mass matrix

•
$$\mathbf{A}_{ij} = \int \kappa(\boldsymbol{x}) \nabla \phi^i(\boldsymbol{x}) \cdot \nabla \phi^j(\boldsymbol{x})$$
 is the stiffness matrix

- ▶ b is the load vector
- u is the vector of unknowns

Time discretisation: Create a 1D partition of the time interval [0, T], $\mathcal{T}_h = \{0 = t_0 < t_1 < \ldots < t_N = T\}$, with $\Delta t = t_{n+1} - t_n$ and $t_n = n\Delta t$.

Backward Euler (Implicit, 1st order)

$$\mathbf{M}\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \mathbf{A}\mathbf{u}^{n+1} = \mathbf{b}, \qquad (\mathbf{M} + \Delta t\mathbf{A})\,\mathbf{u}^{n+1} = \Delta t\mathbf{b} + \mathbf{M}\mathbf{u}^n$$

Crank-Nicolson (Implicit, 2nd order)

$$\mathbf{M}\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \mathbf{A}\mathbf{u}^{n+1/2} = \mathbf{b}, \qquad (\mathbf{M} + \Delta t/2\mathbf{A})\,\mathbf{u}^{n+1/2} = \Delta t/2\mathbf{b} + \mathbf{M}\mathbf{u}^n$$

where $\mathbf{u}^{n+1/2} = 1/2(\mathbf{u}^{n+1} + \mathbf{u}^n)$

Forward Euler (Explicit, 1st order, conditionally stable, $\Delta t < Ch^2$)

$$\mathbf{M}\frac{\mathbf{u}^{n+1}-\mathbf{u}^n}{\Delta t} + \mathbf{A}\mathbf{u}^n = \mathbf{b}, \qquad \mathbf{M}\mathbf{u}^{n+1} = \Delta t\mathbf{b} + \mathbf{M}\mathbf{u}^n - A\mathbf{u}^n$$

Runge-Kutta methods (implicit, explicit, IMEX), ... 37 of 50

Computational cost

- Solve a linear system at each time step
- Implicit methods, system matrix $\mathbf{M} + c\Delta t \mathbf{A}$
- Explicit methods, system matrix M+ (much cheaper, better conditioned, but stringent condition for stability)

Elasticity

Nonlinear problems

Time-dependent problems

Multifield problems

Stokes problem

Strong form: Find $\boldsymbol{u} \in \boldsymbol{V}^D$ and $p \in Q$ such that

$$\begin{cases} -\boldsymbol{\nabla} \cdot \boldsymbol{\mu} \, \boldsymbol{\varepsilon}(\boldsymbol{u}) + \boldsymbol{\nabla} p = \boldsymbol{f} & \text{in } \Omega, \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{g} & \text{on } \Gamma_D, \\ \boldsymbol{\mu} \boldsymbol{\varepsilon}(\boldsymbol{u}) \cdot \boldsymbol{n} - p \boldsymbol{n} = \boldsymbol{h} & \text{on } \Gamma_N. \end{cases}$$

Stokes problem

Testing with $\boldsymbol{v} \in \boldsymbol{V}^0$ and integrating by parts

$$\begin{split} -\int_{\Omega} \boldsymbol{v} \boldsymbol{\nabla} \cdot \mu \, \boldsymbol{\varepsilon}(\boldsymbol{u}) &= \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{v} : \mu \, \boldsymbol{\varepsilon}(\boldsymbol{u}) - \int_{\Gamma_N} \boldsymbol{v} \cdot \mu \, \boldsymbol{\varepsilon}(\boldsymbol{u}) \cdot \boldsymbol{n} \\ &= \int_{\Omega} \mu \, \boldsymbol{\varepsilon}(\boldsymbol{v}) : \boldsymbol{\varepsilon}(\boldsymbol{u}) - \int_{\Gamma_N} \boldsymbol{v} \cdot \mu \, \boldsymbol{\varepsilon}(\boldsymbol{u}) \cdot \boldsymbol{n} \end{split}$$

In order to have the right stresses on the Neumann boundary, we integrate by parts the pressure term

$$\int_{\Omega} \boldsymbol{\nabla} p \cdot \boldsymbol{v} = -\int_{\Omega} p \boldsymbol{\nabla} \cdot \boldsymbol{v} + \int_{\Gamma_N} p \boldsymbol{v} \cdot \boldsymbol{n}$$

Weak form

Adding together with mass conservation, we get the weak form: find $u \in V^D$ and $p \in Q$ such that

$$\int_{\Omega} \mu \boldsymbol{\varepsilon}(\boldsymbol{v}) : \boldsymbol{\varepsilon}(\boldsymbol{u}) - \int_{\Omega} p \boldsymbol{\nabla} \cdot \boldsymbol{v} + \int_{\Omega} q \boldsymbol{\nabla} \cdot \boldsymbol{u} = \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{f} + \int_{\Gamma_N} \boldsymbol{v} \cdot \boldsymbol{h}, \quad \forall \boldsymbol{v} \in \boldsymbol{V}^0, \; \forall q \in Q$$

•
$$\boldsymbol{V} = [H^1(\Omega)]^D$$
 (Korn's inequality),
• $\boldsymbol{V}^D = \{ \boldsymbol{v} \in \boldsymbol{V} : \boldsymbol{v} = \boldsymbol{g} \text{ on } \Gamma_D \}$ is the trial space
• $\boldsymbol{V}^0 = \{ \boldsymbol{v} \in \boldsymbol{V} : \boldsymbol{v} = \boldsymbol{0} \text{ on } \Gamma_D \}$ is the test space

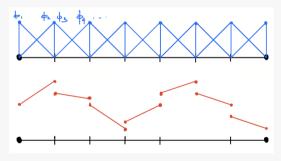
• $Q = L^2(\Omega)$ (no derivatives, no continuity required in FEM)

 L^2 -conformity

• We need to define a FE space $Q_h \subset Q = L^2(\Omega)$

$$Q_h = \{q_h \in L^2(\Omega) : q_h|_K \in \mathcal{P}_p(K) \text{ or } \mathcal{Q}_p(K) \ \forall K \in \mathcal{M}_h\}$$

- No inter-element continuity required by $L^2(\Omega)$
- Simplified version of the previous section (not gluing required)



- We can use discontinuous FE spaces
- We can use continuous FE spaces too
- However, we need to satisfy the so-called inf-sup stability condition

Mixed FEM (II)

Suitable spaces for the Stokes problem:

- ▶ Tris/Tets: $\mathcal{P}_k \times \mathcal{P}_{k-1}$ Taylor-Hood element, $k \ge 2$
- ▶ Quads/Hexs: $Q_k \times Q_{k-1}$ Taylor-Hood element, $k \ge 2$

• Quads/Hexs:
$$\mathcal{Q}_{k+1} \times \mathcal{P}_k^-$$
, $k \ge 2$

Note: \mathcal{P}_k^- means discontinuous polynomials of degree k (analogously for \mathcal{Q}_k^-)

Elasticity

Nonlinear problems

Time-dependent problems

Multifield problems

Darcy equation

Strong form: Find $\boldsymbol{u} \in \boldsymbol{V}^D$ and $p \in Q$ such that

$$\begin{cases} \boldsymbol{u} + \kappa \boldsymbol{\nabla} p = \boldsymbol{0} & \text{in } \Omega, \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} = f & \text{in } \Omega, \\ \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{g} & \text{on } \Gamma_D, \\ p = g & \text{on } \Gamma_N, \end{cases}$$

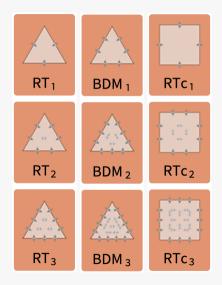
Weak form

Weak form: find $(u, p) \in H(\operatorname{div}; \Omega) \times L^2(\Omega)$ such that a((u, p), (v, q)) = b(v, q) for all $(v, q) \in H(\operatorname{div}; \Omega) \times L^2(\Omega)$, where

$$\begin{aligned} a((u,p),(v,q)) &\doteq \int_{\Omega} v \cdot u \, \mathrm{d}\Omega - \int_{\Omega} (\nabla \cdot v) \, p \, \mathrm{d}\Omega + \int_{\Omega} q \, (\nabla \cdot u) \, \mathrm{d}\Omega, \\ b(v,q) &\doteq \int_{\Omega} q \, f \, \mathrm{d}\Omega - \int_{\Gamma_{\mathrm{N}}} (v \cdot n) \, g \, \mathrm{d}\Gamma. \end{aligned}$$

- Only control on $\nabla \cdot u$ needed
- lt only implies continuity of $u \cdot n$ on element boundaries

Div-conforming FEM



 $\blacktriangleright \mathcal{RT}_k = [\mathcal{P}_k]^D + \boldsymbol{x}\mathcal{P}_k$

$$\blacktriangleright \mathcal{BDM}_k = [\mathcal{P}_k]^D$$

$$\blacktriangleright \ \mathcal{RT}_k = \mathcal{Q}_{k+1,k} \times \mathcal{Q}_{k,k+1}$$

 DOFs are normal fluxes on the faces of the elements (for div-conformity) + ...

Stable pairs

Stable flux / pressure spaces:

- Tris/tets: $\mathcal{RT}_k \times \mathcal{P}_k^-$
- ► Tri/tets: $\mathcal{BDM}_{k+1} \times \mathcal{P}_k^-$
- Quads/hex: $\mathcal{RT}_k \times \mathcal{Q}_k^-$

Inf-sup condition

There exists $\beta > 0$ such that

$$\inf_{q \in Q_h} \sup_{\boldsymbol{v} \in \boldsymbol{V}_h^0} \frac{\int_{\Omega} q \boldsymbol{\nabla} \cdot \boldsymbol{v}}{\|\boldsymbol{v}\|_{H^1(\Omega)} \|q\|_{L^2(\Omega)}} \geq \beta$$

Analogously for \mathbf{curl} operator (Maxwell equations, not covered in this tutorial)