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Introduction
Probably, you are familiar with the strong form of PDEs
Example: Poisson equation

-V - (kVu)=f inQ, u=g onIp —kVu-n=h only

» Q c RP is the physical domain,
» T'p is the Dirichlet boundary,
» I'y is the Neumann boundary
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Weak form

PDEs can alternatively be written in weak form

Procedure:
1. Multiply the strong form by a test function v
2. Integrate by parts
3. Apply boundary conditions

—/QUV-(fiVu)—/QVU-(/<;Vu)—/an/iVu-n—/QVv-(ﬁ:Vu)—/Fth

usingthatv =00onTp and kVu-n=honTy
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Weak form (ll)

Example: Poisson equation

Findue VP : /VU'(HVU):/Uf+/ vh, Yve VY
Q Q I'y
where V' is a function space (crucial for well-posedness) and
VP ={veV:v=gonTp}, VO={veV:v=00nTp}
are the trial and test spaces, respectively

The weak form is used in finite element methods
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Function spaces
The weak form is a variational solution of a quadratic functional
u = arg min J(u), J(u) = / K| Vu)? —/uf—/ uh
ucV P Q Q I'n
It makes sense to consider V' as the space in which J(u) < oo (well-defined)
V =HYQ) = {u(z) : / IVu|? < oo}
Q
» V is an infinite-dimensional space of functions

» We need to discretize the problem to obtain a finite-dimensional system of
equations (e.g., using polynomials)

6 of 50



Spectral approximation

Approximate V' by the polynomial space of order p
Py = {1,z,2%,... 2P}

» Hard to deal with geometries that are not boxes
> [t exploits the smoothness of the solution (Taylor expansion)
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Finite element spaces

Consider a mesh M,, i.e., a partition of 2 into elements / cells (segments,
triangles or quadrilaterals, tetrahedra or hexahedra, etc.)
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FEM space
A finite element space V;, C V is a space of piecewise polynomials of order p
defined on M,

Vhi{thV:vh|KE7)p, VKEM}L}




Reference FE

A reference FE is composed of:
> A polytope (triangle, square, etc), the reference cell K
» A reference FE space V of polynomials on K
> The degrees of freedom (DOFs) that define the shape functions basis for V
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Lagrangian 1D (SEGMENT)

> & =0,1],
> V={l,z,2% ..., zP} = Pp,
» DOFs: Nodal values at {0,1/p,2/p,...,1}

= -
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Lagrangian 2D (TRI)
» Triangle with vertices (0,0), (1,0), (0,1)

(1,
> P, = {1,z,y,2%,zy,v>, ...} (tensor product)
» DOFs: Nodal values
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Lagrangian 2D (TRI)

» Triangle with vertices (0,0), (1,0), (0,1)
> P, ={1,2,y,2% zy,y?, ...} (tensor product)
» DOFs: Nodal values

A
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Lagrangian 2D (TRI)

» Triangle with vertices (0,0), (1,0), (0,1)
> P, ={1,2,y,2% zy,y?, ...} (tensor product)
» DOFs: Nodal values

./ AA
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Lagrangian 2D (QUAD)
> K =1[0,1]2,
> 9, ={1,z,y,zy, 2% 2%y, 2%%, .. .}
» DOFs: Nodal values
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Lagrangian 2D (QUAD)

> K =1[0,1]%,
> Qp = {]-a .CC, y7 IEy, 372, $2y7$2y2a . }
» DOFs: Nodal values

N\ A d
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Lagrangian 2D (QUAD)

> K = [0,1)2,
> Qp = {1,z,y,zy, 2% 2%y, 2%, .. .}
» DOFs: Nodal values
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y

—
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From reference to physical space

> A geometric map ®x : K — K

K,

K;
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From reference to physical space

» The space to the physical cell K is
Vi = {vo®g! 1 v € Py(K)}

\7 éspan {5‘,@2,33,5“} Vispan {bl,bz,ba,b4},
) = span {l,z,y4,zy} where b (z) = 5 0 37 ()
053
K
1 2
& 4 1
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Conformity

Still, there is part of the definition that is not covered:
Vi, = {/U]l eV: Uh’K € Pp, VK € Mh}

» A discontinuous piecewise polynomial is not in H'()
> |o Vuy, is not bounded
» Piecewise polynomials in C°(2) are in H*(Q)
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Enforcing continuity
We must enforce continuity for v}, ¢ H()

Vi = {v, € C°(Q) s vp|lk € Pp, VK € My}
Using Lagrangian FEs, we just assemble / glue together DOFs of adjacent cells

3 413 4 8 9
K Ky K Ky
1 211 2] 4 5 6
3 413 4
K, K, K K,
1 2]1 2 1 2 3

local numbering global numbering

2 1
ks Pk,

LT
Ay £
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FE Basis

Let us split the Lagrangian nodes N of the FE space V}, into free nodes Az (on
Q2 c I'p) and Dirichlet nodes N'p (on T'p)

For each node i € NV, we can consider the shape functions (Lagrangian nodes)

¢'(z;) = bij = {

1 ifi=j
0 ifij

It returns a basis of V}, = {¢',...,¢"VF, Ve pNFHNDY
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Galerkin + FEM

FE discretisation of the Poisson equation (using Galerkin method)

Find uj, € V;P - Voup - (kVup) = [ vnf + vph, Yo, € V2
h
Q Q INY,

where V}, is a function space (crucial for well-posedness) and
VhD ={vp €V :v, =gatnodesonTp}, VO ={v, €V} :v, =0atnodesonI'p}

are the trial and test FE spaces, respectively
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Trial/test FE basis
> Test space: A basis for V0 = {¢!,..., o7}
» Trial space: Any function u;, € V,” can be written as

Np Nr+Np

0, ,D 0 i i 0 D ‘

up, = up, + uy , up, = g u'¢eVy, wy = E g(z;) o'
i=1 i=Np+1

where «? is data (g is given) and u € R™* is the unknown vector of
coefficients

+q {"L oot +'¢|=

D
7§ glxg 1
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Trial/test FE basis

> Test space: A basis for V0 = {¢*,...,¢"VF}
» Trial space: Any function uy, € V;” can be written as

Np Nrp+Np
up, = uy +up, u) = Z u'el e VP, WP = Z g(z;) o'
i=1 i=Np+1

where «? is data (g is given) and u € RM* is the unknown vector of
coefficients

*

1
\AL e
%Lxg) /u:i/ca(%h)
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Linear system (I)

» Galerkin formulation:
Find uy, € VhD c / Voup - (kVuy) = / vpf —I—/ vph, Yo, € V,?
Q Q I'n
» Using the FE basis for the test space

Find uy, € V;P - /V¢i-(ﬁVuh):/¢if+ #h, Vi=1,...,Np
Q Q 'n
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Linear system (I)

» Galerkin formulation:

Find uy, € VhD g / Voup - (kVuy) = / vpf +/ vph, Yo, € V;?
Q Q Iy

N
> Using the decomposition u;, = uf) + uf’
Find u € RVF . [/ V- (Wqﬁf)] w = / Of+ | ¢h— / V¢ - (kVud),
Q Q I'n Q

Vi=1,...,Np
» We end up with a linear system to be solved Au =b
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Linear system(ll)

» One can compute all the integrals using a quadrature rule Q at the reference
element, e.g.,

/ Vo - (kV) = Y / JIVE - (kJZTV ) det(Jk)
KeM,,
Z Z JI_(Tﬁqgi . (/10@KJI}T@ggj)det(JK)L@gpwgp
KeMp &gpc0
where J, = Vog.

» Usually, we use a Gaussian quadrature Q that integrates exactly the matrix
terms of the linear system

» The degree of the quadrature is the maximum order of a polynomial that can
be integrated exactly (e.g., 2p for FE spaces of order p and a linear

geometrical map)
21 of 50



Linear system (lll)

» We have started with a PDE in weak form (oo dimensional space V')

» Using a FE space V}, (finite dimensional polynomial space) we have
transformed it into a linear system Au=b

» This approximation comes with the price of a numerical error
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Bounds for numerical errors

Let us define the L2 and H! norms of a function «

1/2 1/2
il = ([2) " ol = ([ 9w+ [2) 7
Q Q Q

» The discretisation error ¢;, = u — u; can be bounded by
lenll o) < Chlull ey, llenllzz@y < ChI [l gavr(q)

for any ¢ < p, where h is the mesh size and p is the order of the FE space

» The HP*! norm means the L2-norm of all the derivatives up to p + 1 (requires
smoothness)
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Bounds for numerical errors (Il)

Assuming the solution is smooth enough (¢ = p),
lenll (@) < Cub?, lenllz2@) < CubPt
Thus,
log [lenllgioy < C +plogh,  logllen|r2@) < C + (p+1)logh

We can check these bounds experimentally in the tutorials
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Elasticity
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Linear elasticity

Linear elasticity (strong form):

—V.o(u)=finQ,
u=gonlp,
o(u)-n=honTIy.

where u is the displacement vector and o (u) is the stress 2-tensor defined as

1

o(u) = X\ tr(e(w)) I+ 2pe(u), e(u) = = (Vu+ (Vu)')

O |
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Weak form (elasticity)

Times v the strong form and integrate by parts:

/Qv~(V-a(u))—/QVv:a(u)—/an-a(u)‘n—/QV'v:a(u)—/FNv-a(u)-n

/Qs('v):a(u)—/FNv-h
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Weak form (elasticity)

We get the weak form:

Findu e VP : /
Q

zs(v):a(u):/ﬂv-f+/F v-h, YweV’

> V = [H'(Q)]” (Korn’s inequality),
» VP ={vecV : v=gonTp}isthe trial space
» VO={veV : v=00nTp} is the test space
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Finite element space

» We want a FE space V;, C V = [H}(Q)]P

» Same conformity, i.e., V;, C [C°(Q)]P

> V5, = [Vi,]P, where Vj, is the scalar FE space of the previous section
> All the ideas in the previous section readily apply for each component
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Nonlinear problems
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Nonlinear problems

Let us consider a nonlinear model problem, p-Laplacian:

V- ([VuP?Vu)=f inQ, u=g ondN

where p > 2 is a given parameter

The weak form is

Finduec VP . / \VulP~2Vu - Vo = / fv, YweV°
Q Q

» Same conformity as Poisson, V¥ = H'(Q)
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Newton’s method

Nonlinear problem wrt «

One can use Newton’s method to solve it

We want to solve f(u) = 0 iteratively

Using the fact that f(u + du) = f(u) + f'(u)ou
Given v’

vVvYvyVvyy

fl(ui)dui-i-l — _f(uz)’ ui-‘rl — ui + 6ui+1

till convergence
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Residual and Jacobian

We better state the problem in terms of the residual:
weVP : rlu,v) = / Vo - (|Vu|p_2 Vu) dQ—/v fdQ=0, YoeV°
Q Q

We compute the variation of the residual wrt a given direction du € V% at uw € VP

or(u,v)
ou

r(u+ du,v) ~ r(u,v) + ou

where j(0u, u,v) = aT(u v)

is the Jacobian evaluated at u € U, which is the
bilinear form

[7(u,v)ou = /QVU- (\Vu|p_2 Véu) dQJr(pQ)/QVv- (|Vu\p_4(Vu - Vou)Vu) dQ.
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Discrete problem

Using Newton + FEM:
Find suitt € V0 5 (0uit™, ul, vp) = —r(ul,vp), Vop € V2

> j(5u§f1, ut, vp) is @ linear system to be solved at each nonlinear iteration
» After linearisation, we can apply the same ideas as in the previous section

» We can compute the expression of the Jacobian by hand or using automatic
differentiation

34 of 50



Time-dependent problems
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Heat equation in weak form:

Findue VP . /vatu—F/Vv-(fiVu):/vf—i-/ vh, YveV°
Q Q Q I'n

Semi-discretised problem (using ideas above, only discretise in space):

Mu + Au = b, u=-M'Au+M'b

> M;; = [ ¢'(z)¢’(z) is the mass matrix

> A = [k(x)V¢'(z) - V¢ (z) is the stiffness matrix
» b is the load vector

» u is the vector of unknowns
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Time discretisation: Create a 1D partition of the time interval [0, 77,
Th={0=ty<t;<...<ty =T} with At =t,41 —t, and t,, = nAt.
» Backward Euler (Implicit, 1st order)

un+1 —u”

M————+ Au"t! = b, (M + AtA) u"! = Atb + Mu"

» Crank-Nicolson (Implicit, 2nd order)

un—‘,—l _

MTU +AUT2 =b, (M + At/2A)u" 2 = At/2b + Mu”

where u"t1/2 = 1/2(u"*! + u")
» Forward Euler (Explicit, 1st order, conditionally stable, At < Ch?)

un—i—l —u®
MT + Au” =b, Mu"! = Atb + Mu” — Au”

» Runge-Kutta methods (implicit, explicit, IMEX), ...
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Computational cost

» Solve a linear system at each time step
» Implicit methods, system matrix M + cAtA

» Explicit methods, system matrix M+ (much cheaper, better conditioned, but
stringent condition for stability)
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Multifield problems
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Stokes problem

Strong form: Find u € VP and p € Q such that

V. pe(w)+Vp=f inQ,
V-u=0 in Q,
u=g onTIp,
pue(u) -n—pn=nh onI'y.

40 of 50



Stokes problem

Testing with v € V° and integrating by parts

/vV we(u /Vv we(u / v-pe(u) -n
—/Qus(v):e(u)—/FNv-ue(u)-n

In order to have the right stresses on the Neumann boundary, we integrate by
parts the pressure term

/Vp-v:—/pV~'v+ pUv-n
Q Q 'y
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Weak form

Adding together with mass conservation, we get the weak form: find u € V' and
p € @ such that

/Qus(v):e(u)—/QpV-'v—i—/QqV~u:/Qv-f+/F v-h, WweV’ vgeQ

> V = [H'(Q)]” (Korn’s inequality),

» VP ={veV : v=gonTp}is the trial space

» VO={veV : v=0o0nTp} is the test space

> Q = L*(Q) (no derivatives, no continuity required in FEM)
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L?-conformity
» We need to define a FE space Q;, ¢ Q = L?*(2)

Qn = {qn € L*(Q) : qulx € Pp(K) or Qp(K) VK € My}

» No inter-element continuity required by L?(Q)
» Simplified version of the previous section (not gluing required)

boohd b
/'\‘ /\

®
o
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Mixed FEM

» We can use discontinuous FE spaces
» We can use continuous FE spaces too
> However, we need to satisfy the so-called inf-sup stability condition
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Mixed FEM (Il)

Suitable spaces for the Stokes problem:
> Tris/Tets: P, x Pr_1 Taylor-Hood element, & > 2
» Quads/Hexs: Qi x Qp_1 Taylor-Hood element, k > 2
> Quads/Hexs: Qp 1 x P, k > 2
Note: P,- means discontinuous polynomials of degree k (analogously for Q,)
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Div-conforming FEM

46 of 50



Darcy equation

Strong form: Find u € VP and p € Q such that

u+xkVp=0 inQ,
Vu=f in Q,
u-n=g onTp,
p=g onI'y.
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Weak form

Weak form: find (u,p) € H(div; Q) x L?(Q) such that a((u, p), (v, q)) = b(v, q) for all
(v,q) € H(div; Q) x L?(Q), where

a((usp) (0:0) = [

Q

b(v,q)i/ﬂqfdﬂ—/FN(v-n)ng.

v-udQ—/(V-v)de+/q(V-u)dQ,
Q Q

» Only control on V - u needed
» It only implies continuity of w - n on element boundaries
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Div-conforming FEM

> RT 1 = [P]? + Py
> BDM;, = [Pi]?
» RTr = Qrt1k X Qb kt1

» DOFs are normal fluxes on the faces of the
elements (for div-conformity) + ...
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Stable pairs

Stable flux / pressure spaces:
» Tris/tets: RT 1 x P,
» Tri/tets: BDMj 1 x Py
> Quads/hex: RTy x Q;

Inf-sup condition
There exists 5 > 0 such that

. JqaV v
inf sup
9€Qn pevo [0l (@) lell 2

>p

Analogously for curl operator (Maxwell equations, not covered in this tutorial)
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