Gridap
Gridap
— ModuleGridap, grid-based approximation of PDEs in the Julia programming language
This module provides rich set of tools for the numerical solution of PDE, mainly based on finite element methods.
The module is structured in the following sub-modules:
Gridap.Helpers
Gridap.Inference
Gridap.Io
Gridap.Algebra
Gridap.TensorValues
Gridap.Arrays
Gridap.Fields
Gridap.Polynomials
Gridap.Integration
Gridap.ReferenceFEs
Gridap.Geometry
Gridap.FESpaces
Gridap.MultiField
Gridap.Visualization
The exported names are:
AffineFEOperator
AffineFETerm
BackslashSolver
BoundaryTriangulation
CartesianDiscreteModel
CartesianGrid
CellField
CellQuadrature
DiscreteModel
DiscreteModelFromFile
FEFunction
FEOperator
FESolver
FESource
FESpace
FETerm
GridapType
HEX
HEX8
InterfaceTriangulation
LUSolver
LagrangianRefFE
LinearFESolver
LinearFETerm
MultiFieldFESpace
NLSolver
PYRAMID
Point
Polytope
QPointCellField
QUAD
QUAD4
RestrictedTriangulation
SEG2
SEGMENT
SerendipityRefFE
SkeletonTriangulation
SparseMatrixCSR
SymSparseMatrixCSR
TET
TET4
TRI
TRI3
TensorValue
TestFESpace
TrialFESpace
Triangulation
VERTEX
VERTEX1
VectorValue
WEDGE
add_tag!
add_tag_from_tags!
apply_statelaw
array_cache
curl
diagonal_tensor
divergence
evaluate
evaluate!
get_array
get_cell_coordinates
get_cell_map
get_coordinates
get_dirichlet_values
get_face_labeling
get_free_values
get_grid
get_matrix
get_normal_vector
get_physical_coordinate
get_triangulation
get_vector
get_weights
getindex!
gradient
inner
integrate
interpolate
interpolate_dirichlet
interpolate_everywhere
is_P
is_Q
is_S
is_affine
is_first_order
is_n_cube
is_simplex
jump
laplacian
@law
mean
num_cell_dims
num_cells
num_dims
num_dirichlet_dofs
num_dirichlet_tags
num_entities
num_free_dofs
num_point_dims
num_tags
numerical_setup
numerical_setup!
operate
outer
restrict
simplexify
solve
solve!
@statelaw
symbolic_setup
symmetric_gradient
update_state_variables!
writevtk
zero_initial_guess
Δ
ε
∇