Gridap
Gridap — ModuleGridap, grid-based approximation of PDEs in the Julia programming language
This module provides rich set of tools for the numerical solution of PDE, mainly based on finite element methods.
The module is structured in the following sub-modules:
Gridap.HelpersGridap.InferenceGridap.IoGridap.AlgebraGridap.TensorValuesGridap.ArraysGridap.FieldsGridap.PolynomialsGridap.IntegrationGridap.ReferenceFEsGridap.GeometryGridap.FESpacesGridap.MultiFieldGridap.Visualization
The exported names are:
AffineFEOperatorAffineFETermBackslashSolverBoundaryTriangulationCartesianDiscreteModelCartesianGridCellQuadratureDiscreteModelFromFileFEFunctionFEOperatorFESolverFESourceFESpaceFETermGridapTypeHEXHEX8LUSolverLagrangianRefFELinearFESolverLinearFETermMultiFieldFESpaceNLSolverPYRAMIDPointQUADQUAD4SEG2SEGMENTSerendipityRefFESkeletonTriangulationSparseMatrixCSRSymSparseMatrixCSRTETTET4TRITRI3TensorValueTestFESpaceTrialFESpaceTriangulationVERTEXVERTEX1VectorValueWEDGEadd_tag!add_tag_from_tags!array_cachecurldiagonal_tensordivergenceevaluateevaluate!get_arrayget_coordinatesget_dirichlet_valuesget_face_labelingget_free_valuesget_gridget_matrixget_normal_vectorget_physical_coordinateget_triangulationget_vectorget_weightsgetindex!gradientinnerintegrateinterpolateinterpolate_dirichletinterpolate_everywhereis_Pis_Qis_Sis_affineis_first_orderis_n_cubeis_simplexjumplaplacian@lawmeannum_cell_dimsnum_cellsnum_dimsnum_dirichlet_dofsnum_dirichlet_tagsnum_entitiesnum_free_dofsnum_point_dimsnum_tagsnumerical_setupnumerical_setup!operateouterrestrictsimplexifysolvesolve!symbolic_setupsymmetric_gradientwritevtkzero_initial_guessΔε∇